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Overview
• ND-1- Resonance Region Nuclear Data Measurement

– Development of a new mid energy capture detector

• 45m flight path and capture detector are operational, planned energy range from 1 keV to 500 keV

• Performed measurements of Fe and Ta, demonstrated capture measurements up to 1 MeV.

– Neutron scattering measurements for Fe 

• 30m flight path, 0.5 MeV to 20 MeV

• Obtained the ratio of inelastic to 1st state to elastic scattering.

• Obtained elastic scattering angular data to improve ORNL fit to extend the RRR to 2 MeV

• ND-2 Thermal Neutron Scattering Measurements

– More details in the next talk

• ND-3 LINAC 2020 Refurbishment and Upgrade Plan

– Klystron order was sent to vendor
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Capability Development
• Developed Mid energy (1 - 500 keV) capture detector
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Resonance Capture

• Resonances represent excited states 

within the newly formed compound 

nucleus.

• Following neutron capture the 

compound nuclide deexcite by emitting 

a gamma cascade (typicaly1-5 gammas).

• The total energy of the gamma is about 

equals the neutron binding energy (few 

MeV)

• The multiplicity depends on the nuclide 

(Z,A) and the resonance spin state (J)
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Why New Capture detector

Multiplicity Detector• RPI has a multiplicity Detector

– ~4p gamma detector

– At E>2 keV resonances exhibit much higher 

scattering than capture cross section 

– Neutron will scatter to the NaI scintillator and 

produce a capture like gamma cascade

– Uses a 1 cm thick 10B4C liner designed to 

absorb neutron that scatters from the sample. 

– Above 2 keV the liner is no longer effective

– This detector is heavily shielded and 

located on a 25m flight path distance

• For measurements of highly scattering resonances in 

the keV region a different approach is needed

– Use C6D6 detectors

• For keV neutrons better energy resolution is required

– Translates to longer flightpath
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Mid-Energy Capture Detector

System Overview
• 4 C6D6 detector modules 

manufactured by Eljen

Technology

• Low mass, low neutron 

sensitivity design

• Located at 45m flight path 

in newly constructed flight 

station

• Measurements made from 

1 eV to 1 MeV
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• The ideal capture detector meets the 

following criteria [1,2]:

1. The efficiency to detect a capture event 

is independent of the multiplicity and 

energy distribution of the capture 

cascade.

2. The detector is minimally sensitive to 

the effects of scattered neutrons.

• Additionally, any detection system 

should have:

• Good speed and timing resolution

• Low background

• High overall detection efficiency

Mid-Energy Capture Detector

Design Criteria

1. A. Borella, G. Aerts, F. Gunsing, M. Moxon, P. Schillebeeckx, and R. Wynants, “The use of C6D6 detectors for neutron capture cross-section measurements in the resonance region,” Nuclear 

Instruments and Methods in Physics Research A, vol. 577, pp. 626–640, April 2007.

2. D. Gayther and R. Thom, “Prompt gamma-ray detectors for the measurement of neutron capture cross-sections,” in Proceedings Meeting on Fast Neutron Capture, A. N. Laboratory, Ed., April 1982, 

pp. 205–238.

C6D6 liquid scintillator
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Mid-Energy Capture Detector

System Overview
• Sample Changer

– Velmex BiSlide linear translation table 

w/ stepper motor and magnetic position 

encoder

• Data Acquisition

– 8-channel SIS3305 digitizer w/ 10-bit, 

1.25GHz functionality

• Beam Flux Monitoring

– 8-Channel MDGG-8 Flexible 

Delay/Gate Generator & Scaler

• Detector Bias 

– 2 Dual-channel 3kV NHQ-203M high 

voltage supplies

• Software

– Custom C/C++ libraries for system 

control, data acquisition, visualization 

and data analysis
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Mid-Energy Capture Detector

Principle of Operation
Uses the “Total Energy” detection principle:

1. Detect only a single photon per capture 

cascade

2. Assert that the detection efficiency is 

proportional to the incident photon 

energy

3. Given 1 and 2, it can be shown that the 

total efficiency to detect a capture event 

is proportional to the total excitation 

energy of the compound nucleus, and 

insensitive to the cascade.
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Mid-Energy Capture Detector

“Total Energy” Principle
1. In general, the total detection efficiency for a capture event is 

given by:

𝜖𝑐 = 1 − 

𝑖

(1 − 𝜖𝛾𝑖)

2. For 𝜖𝛾𝑖<<1:

𝜖𝑐 ≈ 

𝑖

𝜖𝛾𝑖

3. Assert that the efficiency to detect an individual photon be 

proportional to its energy:

𝜖𝛾𝑖 = 𝑘𝐸𝛾𝑖
4. Under these assumptions (Eq. 2, 3), the detection efficiency for 

a cascade is proportional to the total excitation energy of the 

cascade:

𝜖𝑐 ≈ 𝑘 

𝑖

𝐸𝛾𝑖 ≈ 𝑘𝐸𝑥 = 𝑘(𝑆𝑛 + 𝐸𝑛)

єc → Capture Detection Efficiency

єγ,i  → ith Photon Detection Efficiency

Eγ,i → ith Photon Energy

En → Incident Neutron Energy

Sn → Neutron Separation Energy

Ex → Total Excitation Energy

k    → Proportionality Constant
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Mid-Energy Capture Detector

Need AWeighting Function

• With few exceptions, the 

efficiency of a detector is not 

proportional to the incident 

photon energy.

• A weighting function is applied 

to the detector response to 

transform the non-linear 

efficiency into a linear 

efficiency 

• The weighting function 

satisfies the proportionality 

requirement 

Eγ

єγ
Weighted

Efficiency

Unweighted

Efficiency
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Weighting Function

• Weighting functions are 

sample and source 

geometry-dependent

• Detector responses from 

0.1 to 10 MeV are 

simulated in MCNP with 

each sample as a source

• Responses were 

compared to experimental 

gamma spectrum of 

several sources.

𝜖𝛾 =  

0

∞

𝑅 𝐸𝑑, 𝐸𝛾 𝑑𝐸𝑑
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Weighting Function I

• For an incident γ-ray with energy Eγ, the probability that it deposits energy Ed is 

given by the response function:

𝑅(𝐸𝑑, 𝐸𝛾)

• Integrating over the response function yields the total detection efficiency for that γ-

ray, ϵγ:

𝜖𝛾 =  

0

∞

𝑅 𝐸𝑑, 𝐸𝛾 𝑑𝐸𝑑

• To satisfy the energy proportionality requirement, a weighting function W(Ed) is 

applied to the response function:

𝜖𝛾 = 𝑘𝐸𝛾 =  

0

∞

𝑅 𝐸𝑑, 𝐸𝛾 𝑊(𝐸𝑑)𝑑𝐸𝑑

• In terms of the total cascade (mg gammas) detection efficiency, this becomes:

𝜖𝑐 ≈ 𝑘 

𝑖=1

𝑚𝛾

𝐸𝛾,𝑖 = 

𝑖=1

𝑚𝛾

 

0

∞

𝑅 𝐸𝑑, 𝐸𝛾 𝑊(𝐸𝑑)𝑑𝐸𝑑
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Obtaining  A Weighting Function

• Use a polynomial W(Ed)

• Use least squares fit to 

find the polynomial 

coefficients.

• Use experimental data 

and MCNP simulations 

to get the gamma 

spectrum

𝑘𝐸𝛾,𝑖 =  

0

∞
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2 + 𝑏𝑖𝐸𝑑 + 𝑐𝑖)𝑑𝐸𝑑
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0
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+ 𝑐𝑖 

0

∞
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Example: n = 2
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Effect of Sample Thickness on the 

Weighting Function

• Location of neutron interaction affects
the gamma cascade attenuation

• Capture events on the peak of a
resonance (where the transmission is
low) generate photon cascades near the
surface of the sample (1).

• Capture events on the wings of
resonances generate photon cascades
deeper within the sample (2).

• These differing geometries require a
different treatment of the weighting
function at different points on the
resonance.

E

T(E)

1

2

1 2
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Weighting functions
• Weighting functions for surface capture and volume capture were obtained

– Surface used for normalization to saturated resonance at 4.2 eV

– Volume used for weighting the filtered beam data.

n - Weight function polynomial order
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Typical Experiment

• Collect data for a sample of interest

• Collect data with B4C to obtain the neutron flux shape 

as a function of time-of-flight.

• Cycle sample and B4C in and out of the beam every 10 

minutes

• Perform online processing to monitor the time-of-flight 

spectrum
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Typical Data Analysis

• For every detected event j in TOF channel i:

– Obtain the pulse integral Ii,j

– Use the energy calibration to obtain Ei,j

– Sum all weighted events for the sample Cs, its background  CsB , the flux 

Cf, and its background CfB :

– Calculate the capture Yield:

– Normalize the yield (find n)

• To a known black resonance, or to a transmission measurement.
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Corrections to the URR Measured Capture Yield

• In the URR corrections for two 

effects are needed:

– Multiple scattering (results in 

observed higher yield)

– Self shielding (results in observed 

lower yield)

• The experimental yield is 

corrected to obtained the cross 

section.

• Where N is the number density, 

C the correction factor and n

normalization

• The correction works better for 

thin samples that minimize the 

self-shielding and multiple 

scattering
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Fe Capture

• Iron was used as a test to compare with evaluations and other measurements

– The RPI data (45m flight path) has good energy resolution compared to the 

Spencer ORELA data (40m flight path)

– The RPI data provide information above 700 keV
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Mid-Energy Capture Detector

Experimental Results-natFe

• New capture data obtained 

above 847 keV and 1409 

keV inelastic states in 56Fe 

and 54Fe

• Capture signal separated 

from inelastic scattering 

signal by post-processing 

digitized waveforms with 

different energy deposition 
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New Method – Fe Filtered Beam Capture

Results for 181Ta
• Measurements performed on 181Ta 

using Fe-filtered beam technique

• 30cm thick Fe filter removes all 

beam-related gamma and neutron 

background

• Provides a quasi-monoenergetic

neutron source corresponding to 

deep minima in the Fe cross section 
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Mid-Energy Capture Detector

Experimental Results-181Ta

• Count rates for Ta and 

B4C samples were 

summed under each filter 

transmission peak.

• Pb scattering sample 

used to confirm 

negligible neutron 

background
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Mid-Energy Capture Detector

Experimental Results-181Ta Normalization

• Unfiltered run performed to determine 

normalization factor from 4.2 eV saturated 

resonance

• Normalization factor determined from the 

ratio of B4C to Ta counts at the location of 

the saturated resonance (Yγ ≈ 1)

• A refinement of the normalization is based 

on a SAMMY calculations
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Experimental Fe Filtered Beam Results: 181Ta

• As expected thick sample=problems

– Self shielding correction is high

– Multiple scattering correction is high

– Need to work on better understanding of 

the weighting function and it validity

• Thin sample support the JEFF-

3.1/3.2 evaluation 

• Possible contamination from 

inelastic scattering apparent in 

ENDF/B-VII.1
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Mid-Energy Capture Detector

Future Work
• Complete development of 

the data analysis methods

• Complete analysis and 

publication of Fe and Ta 

work

• Explore and implement 

options for reducing ambient 

background

• Improve the mechanical 

stability of the detector array Detector System MCNP 

Shielding Geometries
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Neutron Scattering From natFe
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TOF Scattering Measurement

• Measure TOF:  t = t1 + t2;  where t1 » t2

• All scattering events:  E2 < E1

• For elastic scattering with A » 1:  E1 ~ E2 

• Assuming L = L1 + L2 than total TOF, t, 

can be used to calculate the incident neutron 

energy, E1(t)

L1, t1, E1

L2, t2, E2

L1 ~ 30m

L2 ~ 0.5m
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Fe Scattering Measurement - Setup

The neutron beam size is smaller than the sample.

EJ-301 Liquid Scintillator Neutron Detectors

• Fe Sample

• Dimensions 77.0 x 

152.6 x 32.2 mm

Evacuated Flight Tube
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NatFe Scattering - 61º 
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NatFe Scattering - 153º

Library FOM

ENDF/B-VII.0 14.42

JEFF-3.1 20.31
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Observations for NatFe

• The JENDL-4.0 evaluation had best overall 

agreement with experimental data from 0.5 to 

20 MeV with all angles.

• Experimental data can be analyzed further to 

provide:

– Inelastic to Elastic Scattering Ratios

– Elastic (only) Scattering Contribution
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• Select an energy region (shown between the two black vertical)

• Fit in-beam response functions, fel(I) and finl(I), to known levels

Response(I)= A ∙ fel(I) + (1 – A) ∙ finl(I) Ratio = 
(1 – A)

A
A – Fitted elastic fraction

Elastic

Inelastic
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Inelastic to Elastic Ratio

• Multiple scattering effects included in MCNP simulations

• Statistical and systematic uncertainties included in analysis
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 1.87  0.047 MeV

(Elastic Contribution)

 1.05  0.026 MeV

(Inelastic Contribution)

Elastic Scattering Contribution

• Isolate only the elastic scattering:

– Cut pulses with integral less than the discrimination. 

– Correct for the elastic shape that was discriminated.

Elastic only

• The contribution of elastic 

scattering below the 

discriminator leave can be 

corrected for.

• Use the know pulse height 

shape.
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Comparing Experiments and Simulation
Elastic scattering

• Experimental elastic scattering was inferred from 0.5 to 2.0 MeV

– The experimental data is reasonably represented by a simulation with ENDF/B-VII.1

• Collaborating with ORNL to improve new 56Fe evaluation
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LINAC 2020 Refurbishment and Upgrade Plan

• SLAC team delivered:

– Design concept for the layout of the accelerator.

– Initial modulators design parameters

• An order for 5 Thales klystrons was sent to the 

vendor.

• Planned for FY16

– Modulators order

– Accelerator sections design.
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Past Year Accomplishments

• Developed a new capability to measure capture cross sections in the mid energy 

(keV) range

– Performed a capture measurement for Ta and Fe samples.

– Developed methods to generate weighting function and multiple scattering corrections in 

the URR.

– Developed a new method for filtered beam capture cross section measurements in the 

URR

• Fast neutron scattering measurements

– Completed analysis of fast neutron scattering from Iron

– Obtained ratio of inelastic to elastic cross section for the first exited state.

– Generated elastic scattering only data.

– Delivered data to ORNL for inclusion in extension of RRR above 847 keV.

• LINAC 2020 refurbishment and upgrade plan in progress

– Order for Klystrons was placed with Thales.

– Developing the specifications for the replacement modulators


